

Duc		Salvanized Steel
Diameter		Darcy
in. mm	Friction Factor	
4	10	0.035
6	15	0.028
8	20	0.023
10	25	0.022
12	30	0.019
14	36	0.017
16	40	0.016
20	50	0.015
24	60	0.014

	Equivalent Length, ft (m) at Diameter, in. (cm)				
Fitting	L/D	6 (15)	8 (20)	10 (25)	12 (30)
Elbows					
Pleated, 90 deg	15	8(2.4)	10 (3.1)	13 (4.0)	15 (4.6)
Pleated, 45 deg	-9	5(1.5)	6(1.8)	8 (2.4)	9 (2.7)
Mintred, 90 deg	60	30 (9,1)	40 (12.2)	50 (15.2)	60 (18.3)
Mitered with vanes	10	5(1.5)	7 (2.1)	8(2.4)	10 (3.1)
Transitions				0.(4.4)	40 (3.1)
Converging, 20 deg	4	2 (0.6)	3 (0.9)	3 (0.9)	
Diverging, 120 deg	40	20 (6.1)	27 (8.2)	33 (10.1)	4 (1.2)
Abript expansion	60	30 (9.1)	40 (12.2)	50 (15.2)	40 (12.2)
Round to rectangular	50	25 (7.6)	33 (10.1)	40 (12.2)	60 (18.3) 50 (15.2)
boot, 90 deg		440 C - 241		40 (14-4)	30 (13-2)
Round to rectangular	10	5 (1.5)	7 (2.1)	8 (2.4)	10 (3.1)
boot, straight					
Entrances					
Abrupt, 90 deg	30	15 (4.6)	20(6.1)	25 (7.6)	30 (9.1)
Bellmouth	12	6(1.8)	8 (2.4)	10(3.1)	12 (3.7)
Branch Fittings, Diverging			0.000.41	10 (0.2)	(4.057)
Wye, 45 deg, branch	20	10 (3.1)	13 (4.0)	17 (5.2)	1210323
Wye, 45 deg, through	8	4 (1.2)	5 (1.5)	7 (2.1)	20 (6.1)
Tee, branch	40	20 (6.1)	27 (8.2)	33 (10.1)	8 (2.4)
Tee, through	-40	4 (1.2)	5 (1.5)	33 (10.1) 7 (2.1)	40 (12.2) 8 (2.4)
Branch Fittings, Converging ^b		- (1.2)	3 (1-3)	2.0430	-15 (LL/4)
Wye, 45 deg, branch		10.00.00	101210111	12000	
Wye, 45 deg, through	20	10 (3.1)	13 (4.0)	17 (5.2)	20 (6.1)
wye, 45 deg, urougn Toe, beanch	10 40	5 (1.5)	7 (2.1)	8 (2.4)	10(5.1)
Tee, through	40	20 (6.1)	27 (8.2)	33 (10.1)	40 (12.2)
ice, unough	12	6(1.8)	8(2.4)	10 (3.1)	12 (3.7)
Equivalent lengths are approximat	e and based	on Tables 12.	through 17,17	and an interview it as	

Example 12.9 Compute L _k for duct system		400 cfm (0,19 m ² h) 50 ft (15 m ²) 10in. (25 cm ²) 6 in. (15 cm) 120 cfm (0,057 m ²) 40 ft (12 m ²) 40 ft		
Fittings	Description	Loss coefficient C _o	L _e (ft)	L _e (m)
Entrance	Conical θ=0° Table 12.10A f=0.022 for D=10"	0.5	19	5.8
45 Diverging branch	C _b =0.6, Table 12.11A, D=6"	0.6	11	3.4
Straight 45 diverging	C _s =0.13, Table 12.11A, f=0.0225 for D=9"	0.13	4	1.22
90 elbow	C=0.43, Table 12.8A, f=0.028, D=9"	0.43	7.7	2.35 ₂₉

Section	Q (cfm)	D (in)	V (ft/min)	$\Delta P_0 / L$	L _e	ΔΡ
1	500	12	650	0.058	50	0.029
2	350	10	650	0.07	23	0.016
3	150	8	440	0.045	87	0.039
4	200	8	590	0.075	73	0.055
5	150	8	440	0.045	80	0.036
Run 🛆	re losses i P ₀ (inches 0.029+0.016-	water)	0.9.4	D (D)	G an at	n of en
		055 0.0	10	5 2	Ele	0 (0 p200 cm
124 0	.029+0.016-	+.055=0.0	110 ste	10 (2)	1.11	10,200 m ³ /sl

Example 12.12 For section 4 $\Delta P_{04} = \Delta P_{03} = 0.039$ inches of water $\Delta P_{04} / L = 0.039(100 / 74) = 0.053$ From Fig. 12.21 D₄=8.7 or 9 inches V₄=469 ft/min For section 5 $\Delta P_{05} = 0.084 - 0.029 = 0.055$ From Fig. 12.21 $D_5=7.4$ or 8 inches $V_5 = 440$ ft/min The difference between the two solution is minor section Equal friction method Balanced Capacity method D₄=8" D₄=9" 4 5 D₅=8" D₅=8"

	Recommended air velocities (f/m)					
	Recommended velocity					
	Residence	Schools, public areas	Industrial areas			
Outside air inlet	500	500	500			
Fan outlet	700	800	1000			
Main ducts	700-900	1000-1300	1200-1800			
Branch duct	500-600	500-600	800-1000			

40