King Abdulaziz University
College of Engineering
Mechanical Engineering
MEP 451 Refrigeration \& Air Conditioning
Duct Design
June 2009

Duct design

Air flow in ducts
Major and Minor Losses in Ducts
Loss coefficient for some fittings
Equivalent length for a fittings
Duct accessories
Pressure diagram
Duct design
Equal friction method
Balanced Capacity method
Air Flow in Ducts
Modified Bernoulli equation
$\left(p_{1}+\frac{1}{2} \frac{\rho V_{1}^{2}}{g_{c}}\right)=\left(p_{2}+\frac{1}{2} \frac{\rho V_{2}^{2}}{g_{c}}+\frac{\rho g l_{f}}{g_{c}}\right) \quad$ Major and minor losses
$\left(\frac{g_{c} p_{1}}{\rho g}+\frac{1}{2} \frac{\rho V_{1}^{2}}{g}\right)=\left(\frac{p_{2}}{\rho g}+\frac{1}{2} \frac{\rho V_{2}^{2}}{g}+l_{f}\right)$
$P_{s 1}+P_{v 1}=P_{s 2}+P_{v 2}+\Delta P_{f}$
$P_{01}=P_{02}+\Delta P_{f}$
$\Delta P_{f}=\frac{\rho g l_{f}}{g_{c}} \quad$ Pressure loss between 1 and 2

Velocity air pressure, P_{v}
$P_{v}=\rho\left(\frac{V^{2}}{1097}\right)=\left(\frac{V}{4005}\right)^{2} \quad \mathrm{P}_{\mathrm{v}}$ in in water and V in ft/min
$P_{v}=\rho\left(\frac{V^{2}}{1.414}\right)=\left(\frac{V}{1.29}\right)^{2} \quad \quad \mathrm{P}_{\mathrm{v}}$ in Pa and V in m / s

Major losses in duct

$$
\Delta P_{f}=f \frac{L}{D} \rho \frac{V^{2}}{2 g}
$$

f friction factor $=f(R e, e / D)$

$$
\frac{1}{\sqrt{f}}=-2 \log _{10}\left[\frac{12 e}{3.7 D}+\frac{2.51}{\operatorname{Re}_{D} \sqrt{f}}\right]
$$

$F=$ friction factor $=f(\mathrm{Re}$, roughness)
e is the pipe roughness

Uses of pressure loss charts

1-In English unit chart (Fig. 12.21), the y-axis is the pressure drop per 100 ft length of the duct

2-The chart has 4 parameters: pressure drop, air flow rate, air velocity, and duct diameter

3 -Knowing two of these parameters, one can get the other two parameters

4-The given duct size is for circular pipe. Use the equivalent table or equation to find the size of the rectangular duct

Equivalent of a circular duct
$D_{e}=1.3 \frac{(a b)^{5 / 8}}{(a+b)^{1 / 4}}$
D_{e} equivalent diameter
a and b are the dimension of a rectangular duct

Figs. $\mathbf{1 2 . 2 1}$ and $\mathbf{1 2 . 2 2}$ correction factors
A) Correction factor for density and viscosity when $\mathrm{T}>100^{\circ} \mathrm{F}(38 \mathrm{C})$

$$
C=\left(\frac{\rho_{a}}{\rho_{s}}\right)^{0.9}\left(\frac{\mu_{a}}{\mu_{s}}\right)^{0.1}
$$

subscript a refers to actual and s refers to standard condition

$$
\Delta P_{0 a}=C \Delta P_{0 s}
$$

Notes on using pressure loss chart

You can enter the chart knowing the CFM and pressure loss to get duct size in diameters and air velocity

If you know the flow rate and rectangular cross section velocity, then calculate V and enter the chart using V and D_{h}

Equivalent of a minor loss in terms of straight pipe length

Major loss

$$
\Delta P_{L}=f \frac{L}{D} \rho \frac{V^{2}}{2 g}
$$

Minor losses (losses in fittings)

$$
\begin{gathered}
\Delta P_{0}=C \rho \frac{V^{2}}{2 g} \\
\frac{L}{D}=\frac{C}{f}
\end{gathered}
$$

Duct accessories

1- Dampers (Parallel blades and opposed blades)
2-Fire dampers
3 -Turnning vanes (linear and aerofoil)

Figure 12-25 Typrat apposed thide danyer membly

Duct design methods

1-Equal friction method
2-Balanced capacity method
3-Static regain method

Pressure diagrams

Energy grade line EGL=Total pressure $=P_{\text {o }}$

Igure 12-27 A simple fan system

Hydraulic grade line EGL=static pressure, P_{s}

Equal friction method

1-Select the run with the anticipated max. flow resistance
2-Calculate the duct equivalent length $\left(\mathrm{L}_{\mathrm{e}}\right)$
3-From the known pressure available for the supply duct, calculate the pressure loss in inches of water per 100 feet ($\Delta \mathrm{P} / \mathrm{L}$)
4-Size each duct section using the pressure drop and the flow rate in that section 5-Calculate the total pressure drop for each run. Use dampers when necessary

Example 12.11

Size the duct system shown using equal friction method. Total pressure available fro duct is 0.12 " water. The pressure drop for each diffuser is 0.02 " water

$\overbrace{\left(0.071 \mathrm{~m}^{3 / \mathrm{s}}\right)}^{5 \mathrm{ft} \quad \text { (5) }}$
Figure 12-32 A simple duct layout.
Example 12.11
Available pressure is 0.12 in
$\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~Pa})$. Loss in diffuser
is 0.02 in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~Pa})$.
$L_{123}=\left(L_{1}+L_{\text {ent }}\right)+\left(L_{2}+L_{\text {st }}\right)+\left(L_{3}+L_{\text {wye }}+L_{45}+L_{90}+L_{\text {boot }}\right)$
$L_{123}=(20+30)+(15+8)+(25+13+6+10+33)=160 \mathrm{ft}$
$\Delta P_{0} / L=0.1^{*}(100 / 160)=0.063$ in $\mathrm{H}_{2} \mathrm{O}$ per 100 ft

Recommended air velocities (f/m)			
Recommended velocity Residence Schools, public areas Industrial areas			
Outside air inlet	500	500	500
Fan outlet	700	800	1000
Main ducts	$700-900$	$1000-1300$	$1200-1800$
Branch duct	$500-600$	$500-600$	$800-1000$

